« Forschungslandschaft: Projekte
Automatisierte akustisch-prosodische Sprachanalyse für die Psychotherapieforschung und die Entwicklung von e-companion enhancement in der Psychotherapie (ASPIRE)
Projektleiter:
Projektbearbeiter:
Prof. Dr. med. Florian Junne
Finanzierung:
Bundesministerium für Forschung, Technologie und Raumfahrt;
Automatisierte KI-gestützte Sprachanalyse, die potentiell in Echtzeit (intra-session) relevante Konstrukt-Marker erfassen und deren Auswertung ermöglichen kann, hat das Potenzial zur evidenzbasierten situativen Interventionsgestaltung in der Präzisionspsychotherapie beizutragen und als digitale enhancement-Technologie (e-companion) wirksam zu werden (Kučera & Mehl, 2022; Chekroud et al., 2021; Krüger, Siegert & Junne, 2022).
Ziel des Vorhabens ist im Rahmen eines proof-of-concept-Ansatzes die Entwicklung eines validen Prädiktionsmodells für den zentralen Wirkfaktor therapeutische Beziehung (als Modellkonstrukt) auf Basis von sprachinhaltlichen und prosodisch-akustischen Sprachdaten. Dies ermöglicht automatisierte Marker-Identifikation als Basis für die künftige Rückmeldung an PsychotherapeutInnen zur weiteren gezielten Interventionsgestaltung. Auf Basis von automatisierten Diskursanalysen und validierten Ratingsystemen, sollen Querschnittsanalysen zur interpersonalen Robustheit inhaltsanalytischer und akustisch-prosodischer Marker sowie Längsschnittanalysen individueller Beziehungsverläufe ermöglich werden. In der Datenanalyse erfolgt eine automatische Extraktion der sprachinhaltlichen und der prosodisch-akustischen Marker aus Audiodaten (insb. solche, die im Zusammenhang mit Pitch, Energie, Voice Quality und Rhythmus stehen). Parallel werden KI-basierte State-of-the-Art Anonymisierungsmethoden für den Erhalt der sprachinhaltlichen und prosodisch-akustischen Marker angepasst und es wird analysiert, inwieweit die anonymisierten Daten für die Bewertung der therapeutischen Beziehung reliabel sind.
Ziel des Vorhabens ist im Rahmen eines proof-of-concept-Ansatzes die Entwicklung eines validen Prädiktionsmodells für den zentralen Wirkfaktor therapeutische Beziehung (als Modellkonstrukt) auf Basis von sprachinhaltlichen und prosodisch-akustischen Sprachdaten. Dies ermöglicht automatisierte Marker-Identifikation als Basis für die künftige Rückmeldung an PsychotherapeutInnen zur weiteren gezielten Interventionsgestaltung. Auf Basis von automatisierten Diskursanalysen und validierten Ratingsystemen, sollen Querschnittsanalysen zur interpersonalen Robustheit inhaltsanalytischer und akustisch-prosodischer Marker sowie Längsschnittanalysen individueller Beziehungsverläufe ermöglich werden. In der Datenanalyse erfolgt eine automatische Extraktion der sprachinhaltlichen und der prosodisch-akustischen Marker aus Audiodaten (insb. solche, die im Zusammenhang mit Pitch, Energie, Voice Quality und Rhythmus stehen). Parallel werden KI-basierte State-of-the-Art Anonymisierungsmethoden für den Erhalt der sprachinhaltlichen und prosodisch-akustischen Marker angepasst und es wird analysiert, inwieweit die anonymisierten Daten für die Bewertung der therapeutischen Beziehung reliabel sind.
Kooperationen im Projekt
Anmerkungen
Förderung im Rahmen des Deutschen Zentrums für Psychische Gesundheit
Kontakt
Dr. Julia Krüger
Otto-von-Guericke-Universität Magdeburg
Medizinische Fakultät
Universitätsklinik für Psychosomatische Medizin und Psychotherapie
Leipziger Str. 44
39120
Magdeburg
Tel.:+49 391 6714381
weitere Projekte
Die Daten werden geladen ...
