« Forschungslandschaft: Projekte
Iterative Lösung für eine Multiklassen-Diskriminantenanalyse mit Kernfunktionen
Projektleiter:
Projektbearbeiter:
Edin Andelic
Projekthomepage:
Finanzierung:
Eine robuste Spracherkennung kann nur dann funktionieren, wenn einzelne phonetische Einheiten im Signalraum als zu einer Klasse gehörende Cluster identifizierbar und voneinander unterscheidbar sind. Um dies zu gewährleisten, werden Sprachsignale mit Methoden der digitalen Signalverarbeitung bearbeitet. Die dabei entstehenden Cluster können jedoch sehr leicht nicht separierbar werden. Dies ist insbesondere dann der Fall, wenn mehr als zwei Klassen vorliegen. Daher ist eine Weiterverarbeitung der Daten unumgänglich. Die bisherigen Methoden basieren auf einer linearen Transformationen des hochdimensionalen Vektorraums, aus dem die erwähnten Cluster stammen. Diese Methoden funktionieren jedoch nur in sehr einfachen Fällen. Der neue Ansatz innerhalb dieses Promotionsvorhabens zielt auf eine nicht-lineare Transformation des hochdimensionalen Vektorraums mit Kernfunktionen ab, durch die eine bessere Separierung der einzelnen Cluster ermöglicht werden soll. Bei der anschließenden linearen Diskriminanzanalyse können schnell Matrizen sehr hoher Dimensionalität entstehen. Vor allem im Hinblick auf einen späteren Echtzeiteinsatz des Spracherkenners wäre eine analytische Bearbeitung solcher Matrizen nicht sinnvoll. Daher ist ein weiteres wichtiges Ziel dieses Promotionsvorhabens eine Diskriminanzanalyse, die iterativ implementiert werden kann
Anmerkungen
Schlagworte:
Kernfunktion, Spracherkennung
Kernfunktion, Spracherkennung
Kontakt

Prof. Dr. Andreas Wendemuth
Otto-von-Guericke-Universität Magdeburg
Fakultät für Elektrotechnik und Informationstechnik
Institut für Informations- und Kommunikationstechnik
Universitätsplatz 2
39106
Magdeburg
Tel.:+49 391 6758448
Fax:+49 391 6720052
weitere Projekte
Die Daten werden geladen ...