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a b s t r a c t

This paper presents the analytical and numerical investigations of two established models for simulating

liquid chromatographic processes namely the equilibrium dispersive and lumped kinetic models. The

models are analyzed using Dirichlet and Robin boundary conditions. The Laplace transformation is applied

to solve these models analytically for single component adsorption under linear conditions. Statistical

moments of step responses are calculated and compared with the numerical predictions for both types of

boundary conditions. The discontinuous Galerkin finite element method is proposed to numerically

approximate the more general lumped kinetic model. The scheme achieves high order accuracy on coarse

grids, resolves sharp discontinuities, and avoids numerical diffusion and dispersion. For validation, the

results of the suggested method are compared with some flux-limiting finite volume schemes available in

the literature. A good agreement of the numerical and analytical solutions for simplified cases verifies the

robustness and accuracy of the proposed method. The method is also capable to solve chromatographic

models also for non-linear and competitive adsorption equilibrium isotherms.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Chromatography is a highly selective separation and purification
process used in a broad range of industries, including pharmaceutical
and biotechnical applications. In recent years, this technology
emerged as a useful tool to isolate and purify chiral molecules,
amino-acids, enzymes, and sugars. It has capability to provide high
purity and yield at reasonable production rates even for difficult
separations, for instance to isolate enantiomers or to purify proteins.
During the migration of the mixture components through tubular
columns filled with suitable particles forming the stationary phase,
ll rights reserved.
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composition fronts develop and propagate governed by the adsorp-
tion isotherms providing a characteristic retention behavior of the
species involved. Separated peaks of desired purity can be collected
periodically at the outlet of the columns.

Different models were introduced in the literature for describ-
ing chromatographic processes, such as the general rate model,
various kinetic models, and the equilibrium dispersive model
(EDM), see e.g. Ruthven (1984), Guiochon and Lin (2003), Felinger
et al. (2004), and Guiochon et al. (2006).

In this paper, the EDM and a non-equilibrium adsorption lumped
kinetic model (LKM), suggested initially by Lapidus and Amundson
(1952), are solved analytically and numerically. For this purpose, the
Laplace transformation is utilized as a basic tool to transform the
partial differential equations (PDEs) of the models for linear
isotherms to ordinary differential equations (ODEs). The corre-
sponding analytical solutions of EDM and LKM are obtained along
with Dirichlet and Robin boundary conditions. If no analytical
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inversion could be performed, the numerical inversion is used to
generate the time domain solution for both types of boundary
conditions. To analyze the considered models, the moment
method is employed to get expressions for retention times, band
broadenings, and front asymmetries. Such moment analysis
approach has been found instructive in the literature, see for
example Guiochon et al. (2006), Kubib (1965a,b), Kucera (1965),
Miyabe and Guiochon (2000, 2003), Miyabe (2007, 2009), Ruthven
(1984), Schneider and Smith (1968) as well as Suzuki (1973).

For non-linear adsorption isotherms, analytical solutions of the
model equations cannot be derived. For that reason, numerical
simulations are needed to accurately predict the dynamic behavior
of chromatographic columns. Steep concentration fronts and shock
layers may occur due to the convection dominated PDEs of
chromatographic models and, hence, an efficient numerical method
is required to obtain accurate and physically realistic solutions.

Discontinuous Galerkin (DG) methods have been widely used
in the computational fluid dynamics and could be a good choice to
solve non-linear convection-dominated problems, see e.g. Bassi
and Rebay (1997), Bahhar et al. (1998), Aizinger et al. (2000), Holik
(2009). This method was introduced by Reed and Hill (1973) for
hyperbolic equations. Afterwards, various DG methods were
developed and formulated for non-linear hyperbolic systems, see
for example Cockburn and Shu (1989, 1998, 2001), Cockburn et al.
(1990). The DG methods are robust, high order accurate and
stable. They use discontinuous approximations which incorporate
the ideas of numerical fluxes and slope limiters in a very natural
way to avoid oscillations in the region of sharp variations. Their
highly parallelizable nature make them easily applicable to
complicated geometries and boundary conditions. In this work,
the Runge–Kutta discontinuous Galerkin (RKDG) method is for the
first time applied to solve the more general lumped kinetic
chromatographic model. The scheme uses the DG scheme in space
coordinates that converts the given PDEs of the model to a system
of ODEs. An explicit and non-linearly stable high order Runge–
Kutta method is used to solve the resulting ODEs system. The
scheme satisfies the total variation bounded (TVB) property that
guarantees the positivity of the scheme, for example the non-
negativity of the mixture concentrations in the current study.

This paper is arranged as follows. In Section 2, the non-equilibrium
lumped kinetic model and as its special case the equilibrium
dispersive model are introduced. In Section 3, analytical solutions of
the two models are discussed. In Section 4, the RKDG method is
derived. In Section 5, the results of the moment analysis are presented
for the considered models. Numerical test problems are discussed in
Section 6 including the case of binary mixtures for non-linear
conditions. Finally, Section 7 gives the conclusions.
2. The lumped kinetic model (LKM)

The following assumptions are used in the derivation of LKM:
1.
 The column is packed homogeneously and is isothermal.

2.
 The radial gradients of concentrations in the column are

neglected.

3.
 The volumetric flow rate remains constant.

4.
 The model lumps contribution of internal and external mass

transport resistances with a mass transfer coefficient k.

5.
 Additionally, the axial dispersion coefficient D is considered

constant for all components.

In the light of above assumptions, the mass balance laws of a
multi-component LKM are expressed as
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In the above equations, Nc represents the number of mixture
components in the sample, cn denotes the n-th liquid concentra-
tion, qn is the n-th solid concentration, u is the interstitial velocity,
E is porosity, t is time, and z stands for the axial-coordinate. The
three characteristic times in the model Eq. (1) are defined as

tC ¼
L

u
, tD ¼

D

u2
, tMT ¼

1

k
: ð4Þ

The ratios of these characteristic times provide dimensionless
quantities as

~t1 ¼
tC

tD
¼

Lu

D
, ~t2 ¼

tC

tMT
¼

Lk

u
: ð5aÞ

Here, ~t1 typically is frequently called the Peclet number Pe

Pe¼ ~t1 ¼
Lu

D
, ð5bÞ

where L denotes the length of the column.
In Eq. (3), the isotherm qn

n describes an equilibrium relation-
ship between the concentrations of n-th components in the
stationary and mobile phases. Isotherms provide thermodynamic
information for designing a chromatographic separation process,
while a non-linear isotherm describes a non-linear relationship
between the liquid and solid phases. The frequently applied
convex non-linear Langmuir isotherm is defined as

qn

n ¼
ancn

1þ
PNc

~n ¼ 1 b ~n c ~n
, n¼ 1,2, . . . ,Nc , ð6Þ

where the an represent Henry’s coefficients and the b ~n quantify
the non-linearity of the single component isotherms. For diluted
systems or small concentrations, Eq. (6) reduces to linear iso-
therms

qn

n ¼ ancn, n¼ 1,2,3, . . . ,Nc: ð7Þ

In above equations, an denotes the n-th Henry’s coefficient. The
initial conditions for fully regenerated columns are given as

cnð0,zÞ ¼ 0, qnð0,zÞ ¼ 0: ð8Þ

To solve Eqs. (1)–(3), inflow and outflow boundary conditions
(BCs) are required. Two types of boundary conditions are applied
in this paper to solve the above model.

2.1. Boundary conditions of type I: Dirichlet boundary conditions

For sufficiently small dispersion coefficient, for example
D¼ 10�5 m2=s, the Dirichlet boundary conditions can be used at
the column inlet

cn9z ¼ 0 ¼ cn,0: ð9aÞ

A useful and realistic outlet boundary conditions are

cnð1,tÞ ¼ 0: ð9bÞ

2.2. Boundary conditions of type II: Robin type boundary conditions

The following accurate inlet boundary conditions are typically
used, see e.g. Danckwerts (1953) and Seidel-Morgenstern (1991).
This Robin type of boundary conditions is known in chemical
engineering as Danckwerts conditions

cn9z ¼ 0 ¼ cn,0þ
D

u

@cn

@z
, n¼ 1,2,3, . . . ,Nc: ð10aÞ
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These inlet conditions are usually applied together with the
following outlet conditions:

@cnðL,tÞ

@z
¼ 0: ð10bÞ

Apart from the two sets used in this work, other boundary
conditions can also be applied to solve the model Eqs. (1)–(3).
2.3. The equilibrium dispersive model (EDM)—a limiting case of

LKM

The basic assumption of EDM is that the kinetics of mass
transfer in the chromatographic column and the kinetics of
adsorption–desorption are fast. This means, the equilibrium
between stationary and mobile phases at all positions of
the column is achieved instantaneously. Further, the value
of the mass transport coefficient k used in the LKM, Eqs. (1)
and (2), becomes larger, i.e. k-1, the model Eqs. (1)–(3) change
to the equilibrium dispersive model ð@q=@t¼ @qn=@tÞ as given
below
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¼Dapp

@2cn

@z2
, n¼ 1,2,3, . . . ,Nc : ð11Þ

Here, F is the phase ratio related to porosity, i.e. F ¼ ð1�EÞ=E, Dapp

is the apparent dispersion coefficient related to the Peclet number
by Pe¼ Lu=Dapp.
3. Analytical solutions of EDM and LKM for linear isotherms

In this section, single component (Nc¼1) linear chromato-
graphic models are considered. Analytical solutions are derived in
a Laplace domain for linear isotherms (Eq. (7)) with Dirichlet (Eq.
(9a)) and Danckwerts (Eq. (10a)) inlet boundary conditions. To
simplify the notations, we consider cðx,tÞ ¼ c1ðx,tÞ.
3.1. Analytical solution of EDM

The Laplace transformation is defined as

Cðx,sÞ ¼

Z 1
0

e�stcðx,tÞ dt, s40: ð12Þ

After normalizing Eq. (11) by defining

x¼ z=L, Pe¼ Lu=Dapp ð13Þ

and by applying the Laplace transformation (12) to Eq. (11) with
Nc¼1 and cinitðt¼ 0,zÞ ¼ 0, we obtain
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The solution of this equation is given as

Cðx,sÞ ¼ A expðl1xÞþB expðl2xÞ, ð15Þ
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After applying the Dirichlet boundary conditions in Eqs. (9a) and
(9b), the values of A and B are given as

A¼
c0

s
, B¼ 0: ð17Þ

Then, Eq. (15) takes the following simple form:
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The solution in the time domain cðx,tÞ, can be obtained by using
the exact formula for the back transformation as
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1
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etsCðx,sÞ ds, ð19Þ

where g is a real constant that exceeds the real part of all the
singularities of Cðx,sÞ. On applying Eq. (19) to Eq. (18), we obtain
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where erfc denotes the complementary error function.
If we consider the second set of boundary conditions given by

Eqs. (10a) and (10b), the values of A and B take the following
forms:
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s

l2 expðl2Þ

1�
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With these values A and B, the back transformation of Eq. (15) is
not doable analytically. However, well established numerical
inverse Laplace transformation could be used to get cðx,tÞ. In this
paper, the Fourier series approximation of Eq. (19) is used, see e.g.
Rice and Do (1995).
3.2. Analytical solution of LKM

After applying the Laplace transformation to the single com-
ponent LKM with Dirichlet boundary conditions, Eqs. (1) and (2)
take the forms
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On putting the value of Q in Eq. (23), we obtain
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Thus, the Laplace domain solution is given as

Cðx,sÞ ¼ A expðl1xÞþB expðl2xÞ, ð27Þ
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where
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For the simplified boundary conditions (9a) and (9b), we have
again
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s
, B¼ 0: ð29Þ

Using these values of A and B in Eq. (27), we obtain
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For sufficiently large values of k in Eq. (31), i.e. when k-1, the
transformed solution Cðx,sÞ for LKM becomes the solution of EDM
given by Eq. (18). Once again, the numerical inverse Laplace
transformation is employed to find the original solution cðx,tÞ of
Eq. (31). For Danckwerts boundary conditions in Eqs. (10a) and
(10b), the solution in the Laplace domain takes the same form as
given by Eq. (27). The values of A and B are provided by Eqs. (21)
and (22), whereas l1,2 can be found in Eq. (28). The numerical
inverse Laplace transformation was employed to find the original
solution cðx,tÞ.
4. Reduced EDM and LKM: moment models

Moment analysis is an effective strategy for deducing impor-
tant information about the retention equilibrium and mass
transfer kinetics in the column, see e.g. Guiochon et al. (2006),
Kucera (1965), Miyabe (2007, 2009), Ruthven (1984), Schneider
and Smith (1968) as well as Suzuki and Smith (1971). The Laplace
transformation can be used as a basic tool to obtain moments. The
numerical inverse Laplace transformation of the equations pro-
vides the optimum solution, but this solution is not helpful to
study the behavior of chromatographic band in the column. The
retention equilibrium-constant and parameters of the mass
transfer kinetics in the column are related to the moments in
the Laplace domain. In this section, a method for describing
Table 1
Analytically determined moments for EDM and LKM for x¼1 and c0 ¼ 1, m0 ¼ 1 and m1

Models and BC’s m02
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chromatographic peaks by means of statistical moments is used
and the central moments up to third order are calculated for two
sets of boundary conditions. The moment of the band profile at
the exit of chromatographic bed of length x¼L is

mi ¼

Z 1
0

Cðx¼ L,tÞti dt: ð32Þ

The i-th initial normalized moment is

mi ¼

R1
0 Cðx¼ L,tÞti dtR1
0 Cðx¼ L,tÞ dt

: ð33Þ

The i-th central moment is

m0i ¼
R1

0 Cðx¼ L,tÞðt�m1Þ
i dtR1

0 Cðx¼ L,tÞ dt
: ð34Þ

In this study, the first three moments are calculated for the
equilibrium dispersive and lumped kinetic models. The formulas
for the finite moments m0, m1, m02, m03 corresponding to the EDM
and LKM with both sets of boundary conditions are given in
Table 1. Complete derivations of these moments for EDM and
LKM are presented in Appendix A. It is well known that the first
moment m1 corresponds to the retention time tR. The value of the
equilibrium constant a can be estimated from the slopes of a
straight lines, m1 ¼ tR over 1=u for constant column length and
porosity. It is shown (cf. Table 1) that effects of longitudinal
diffusion are not significant with respect to retention time or first
moment. The second central moment m2 or the variance of the
elution breakthrough curves or peaks provides significant infor-
mation related to mass transfer processes in the column. The
quantitative value of m2 or variance indicates the band broad-
ening or width of breakthrough curves or peaks and helps to
calculate the HETP (height equivalent to theoretical plates). A
zeroth value of third statistical moment m03 designates symmetric
curves. Finally, the third central moment m03 was analyzed which
evaluates front asymmetries. The second and the third central
moments for the more general Danckwerts BCs reduce to the
moments for the Dirichlet BCs in case Dapp approaches to zero. A
comparison of analytical moments and numerical moments
obtained by the proposed numerical scheme is given in the next
section.
5. Numerical scheme for solving LKM

In this section, the Runge Kutta discontinuous Galerkin
method is applied to lumped kinetic model, e.g. Cockburn and
Shu (1989, 2001). The scheme is second order accurate in the
axial-coordinate. The resulting ODE-system is solved by using a
third-order Runge–Kutta ODE-solver. For simplicity, a single
¼ L=uð1þaFÞ.
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component model is considered to derive the numerical scheme
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Then, Eq. (35) changes to the following system of PDEs:
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The axial-length variable z is discretized as follows. For
j¼ 1,2,3, . . . ,N, let zjþ 1

2
be the cell partitions, Ij ¼ �zj�1

2
,zjþ 1

2
½ be the

domain of cell j, Dzj ¼ zjþ 1
2
�zj�1

2
be the width of cell j (cf. Fig. 1).

Moreover, I¼UIj be the partition of the whole domain. We seek
an approximate solution chðt,zÞ to cðt,zÞ such that for each time
tA ½0,T�, chðt,zÞ belongs to the finite dimensional space

Vh ¼ fvAL1
ðIÞ : v9Ij

APm
ðIjÞ, j¼ 1,2,3, . . . ,Ng, ð41Þ

where Pm
ðIjÞ denotes the set of polynomials of degree up to m

defined on the cell Ij. Note that in Vh, the functions are allowed to
have jumps at the cell interface zjþ 1

2
. In order to determine the

approximate solution chðt,zÞ, a weak formulation is needed. To
obtain weak formulation, Eqs. (38)–(40) are multiplied by an
arbitrary smooth function v(z) followed by integration by parts
over the interval Ij, we getZ

Ij

@cðt,zÞ

@t
vðzÞ dz¼�ðf ðcjþ 1

2
,gjþ 1

2
Þvðzjþ 1

2
Þ�f ðcj�1

2
,gj�1

2
Þvðzj�1

2
ÞÞ

þ

Z
Ij

f ðc,gÞ
@vðzÞ

@z

� �
dz�

k

E

Z
Ij

ðqn�qÞvðzÞ dz, ð42Þ

Z
Ij

gðcÞvðzÞ dz¼
ffiffiffiffi
D
p
ðcjþ 1

2
vðzjþ 1

2
Þ�cj�1

2
vðzj�1

2
ÞÞ�

ffiffiffiffi
D
p
Z

Ij

cðzÞ
@vðzÞ

@z
dz,

ð43Þ

Z
Ij

@q

@t
vðzÞ dz¼

k

1�E

Z
Ij

ðqn�qÞvðzÞ dz: ð44Þ

One way to implement Eq. (41) is to choose Legendre polyno-
mials, Pl(z), of order l as local basis functions. In this case, the L2-
orthogonality property of Legendre polynomials can be exploited,
namelyZ 1

�1
PlðsÞPl0 ðsÞ ¼

2

2lþ1

� �
dll0 : ð45Þ

For each zA Ij, the solutions ch and gh can be expressed as

chðt,zÞ ¼
Xm
l ¼ 0

cðlÞj jlðzÞ, ghðchðt,zÞÞ ¼
Xm
l ¼ 0

gðlÞj jlðzÞ,
zj−1 zj zj+1

zj− 1
2

z

zj+ 1
2

Fig. 1. Discretization of the computational domain.
qhðt,zÞ ¼
Xm

l ¼ 0

qðlÞj jlðzÞ, ð46Þ

where

jlðzÞ ¼ Plð2ðz�zjÞ=DzjÞÞ, l¼ 0,1, . . . ,m: ð47Þ

If m¼0 the approximate solution ch uses the piecewise constant
basis functions, if m¼1 the linear basis functions are used, and so
on. In this paper the linear basis functions are taken into account,
therefore l¼0, 1. By using Eqs. (45)–(47), it is easy to verify that

wðlÞj ðtÞ ¼
2lþ1

Dzj

Z
Ij

whðt,zÞjlðzÞ dz, wAfc,g,q,qng: ð48Þ

Then, the smooth function v(z) can be replaced by the test
function jlAVh and the exact solutions c and g by the approx-
imate solutions ch and gh. Moreover, the function f ðcjþ 1

2
,gjþ 1

2
Þ ¼

f ðcðt,zjþ 1
2
Þ,gðcjþ 1

2
ÞÞ is not defined at the cell interface zjþ 1

2
. There-

fore, it has to be replaced by a numerical flux that depends on two
values of chðt,zÞ at the discontinuity, i.e.

f ðcjþ 1
2
,gjþ 1

2
Þ � hjþ 1

2
¼ hðc�

jþ 1
2
,cþ

j�1
2

Þ: ð49Þ

As g :¼ gðcÞ, it can be dropped from the arguments of h for
simplicity. Here

c�
jþ 1

2
:¼ chðt,z�

jþ 1
2
Þ ¼

Xm

l ¼ 0

cðlÞj jlðzjþ 1
2
Þ,

cþ
j�1

2

:¼ chðt,zþ
j�1

2

Þ ¼
Xm

l ¼ 0

cðlÞj jlðzj�1
2
Þ: ð50Þ

Using the above definitions, the weak formulations in Eqs. (42)
and (43) simplify to

dcðlÞj ðtÞ

dt
¼�

2lþ1

Dzj
ðhjþ 1

2
jlðzjþ 1

2
Þ�hj�1

2
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2
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þ
2lþ1

Dzj

Z
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f ðch,ghÞ
djlðzÞ

dz

� �
�

k

E ðq
nðlÞ
j �qðlÞj Þ, ð51Þ

gðlÞj ðtÞ ¼
2lþ1

Dzj

ffiffiffiffi
D
p

� cjþ 1
2
jlðzjþ 1

2
Þ�cj�1

2
jlðzj�1

2
Þ�

Z
Ij

chðt,zÞ
djlðzÞ

dz
dz

 !
, ð52Þ

dqðlÞj ðtÞ

dt
¼

k

1�E ðq
nðlÞ
j �qðlÞj Þ: ð53Þ

The initial data for the above system are given as, cf. Eq. (48),

cðlÞj ð0Þ ¼
2lþ1

Dzj

Z
Ij

cð0,zÞjlðzÞ dz, gðlÞj ð0Þ ¼ gðcðlÞj ð0ÞÞ,

qðlÞj ð0Þ ¼ qðcðlÞj ð0ÞÞ: ð54Þ

It remains to choose the appropriate numerical flux function h.
The above equation defines a monotone scheme if the numerical
flux function hða,bÞ is consistent, hðc,cÞ ¼ f ðc,gðcÞÞ, and satisfies the
Lipschitz continuity condition, i.e. hða,bÞ is a non-decreasing
function of its first argument and non-increasing function of its
second argument. In other words, a scheme is called monotone if
it preserves the monotonicity of the numerical one-dimensional
solution when passing from one time step to another. In this
paper, the local Lax–Friedrichs flux was used which satisfies the
above mentioned properties, see e.g. Kurganov and Tadmor
(2000), LeVeque (2003), Zhang and Liu (2005)

hLLF
ða,bÞ ¼

1

2
½f ða,gðaÞÞþ f ðb,gðbÞÞ�Cðb�aÞ�, ð55Þ

C ¼ max
min ða,bÞr srmax ða,bÞ

9f 0ðs,gðsÞÞ9: ð56Þ



Table 2
Parameters for Section 6.1 (linear isotherm).

Parameters Values

Column length L¼ 1:0 m

Porosity E¼ 0:4

Interstitial velocity u¼ 0:1 m=s

Characteristic time tC ¼ 10 s

Dispersion coefficient for EDM Dapp ¼ 10�4 m2=s

Peclet no for EDM ~t1 ¼ Pe¼ 103

Characteristic time for EDM tD ¼ 0:01 s

Dispersion coefficient for LKM D¼ 10�5 m2=s

Peclet no for LKM ~t1 ¼ Pe¼ 104

Characteristic time for LKM tD ¼ 0:001 s

Mass transfer coefficient k¼ 100 1=s

Characteristic time tMT ¼ 0:01 s

Dimensionless number ~t2 ¼ 103

Concentration at inlet c1,0 ¼ 1:0 g=l

Henry coefficient a¼0.85
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The Gauss–Lobatto quadrature rule of order 10 was used to
approximate the integral terms appearing on the right hand side
of Eqs. (51) and (52).

In order to achieve the total variation stability, some limiting
procedure has to be introduced. For that purpose, it is needed to

modify c7
jþ 1

2

in Eq. (49) by some local projection. For more details,

see e.g. Cockburn and Shu (1989). To this end, we write (50) as

c�
jþ 1

2
¼ cð0Þj þ

~cj, cþ
j�1

2

¼ cð0Þj �ĉ j, ð57Þ

where

~cj ¼
Xm
l ¼ 1

cðlÞj jlðzjþ 1
2
Þ, ĉ j ¼�

Xm

l ¼ 1

cðlÞj jlðzj�1
2
Þ: ð58Þ

In this study, we consider the linear basis functions, therefore

l¼0, 1. In above equation, when m¼0, ~cj ¼ ĉ j ¼ 0 and when m¼1,

~cj ¼ ĉ j ¼ 6cð1Þj , etc. Next, ~cj and ĉ j can be modified as

~c ðmodÞ
j ¼mmð~cj,Dþ cð0Þj ,D�cð0Þj Þ,

ĉ
ðmodÞ
j ¼mmðĉ j,Dþ cð0Þj ,D�cð0Þj Þ, ð59Þ

where D7 :¼ 7 ðcj71�cjÞ and mm is the usual minmod function

defined as

mmða1,a2,a3Þ

¼
s � min

1r ir3
9ai9 if signða1Þ ¼ signða2Þ ¼ signða3Þ ¼ s,

0 otherwise:

(
ð60Þ

Then, Eq. (57) modifies to

c�ðmodÞ

jþ 1
2

¼ cð0Þj þ
~c ðmodÞ

j , cþðmodÞ

j�1
2

¼ cð0Þj �ĉ
ðmodÞ
j ð61Þ

and replaces (49) by

hjþ 1
2
¼ hðc�ðmodÞ

jþ 1
2

,cþðmodÞ
j�1

2

Þ: ð62Þ

This local projection limiter does not affect the accuracy in the
smooth regions and convergence can be achieved without oscilla-
tions near shocks, e.g. Cockburn and Shu (1989). Finally, a Runge–
Kutta method that maintains the TVB property of the scheme is
needed to solve the resulting ODE-system. Let us rewrite Eqs. (51)
and (53) in a concise form as

dch

dt
¼ Lhðch,tÞ: ð63Þ

Then, the m-order TVB Runge–Kutta method can be used to
approximate Eq. (63)

ðchÞ
m
¼
Xm�1

l ¼ 0

½amlðchÞ
ðlÞ
þbmlDtLhððchÞ

ðlÞ,tsþdlDtÞ�,

m¼ 1,2, . . . ,r, ð64Þ

where based on Eq. (54)

ðchÞ
ð0Þ
¼ ðchÞ

m, ðchÞ
ðrÞ
¼ ðchÞ

mþ1: ð65Þ

Here, s denotes the s-th time step. For second order TVB Runge–
Kutta method the coefficients are given as

a10 ¼ b10 ¼ 1, a20 ¼ a21 ¼ b21 ¼
1
2,

b20 ¼ 0, d0 ¼ 0, d1 ¼ 1: ð66Þ

While, for the third order TVB Runge–Kutta method the coeffi-
cients are given as

a10 ¼ b10 ¼ 1, a20 ¼
3
4 , b20 ¼ 0, a21 ¼ b21 ¼

1
4 , a30 ¼

1
3,

b30 ¼ a31 ¼ b31 ¼ 0, a32 ¼ b32 ¼
2
3 ; d0 ¼ 0, d1 ¼ 1, d2 ¼

1
2:

ð67Þ
The CFL condition is given as

Dtr
1

2mþ1

� �
Dzj

9u9
, ð68Þ

where m¼1, 2 for second- and third-order schemes, respectively.
Boundary conditions: Let us put the boundary at z�1

2
¼ 0. The

left boundary condition given by Eqs. (10a) and (10b) can be
implemented as

c�
�1

2
ðtÞ ¼ cð0Þ0 þ

D

u

cð0Þ1 �cð0Þ0

Dz
, ð69Þ

~c ðmodÞ
0 ¼mmð~c0,Dþ cð0Þ0 ,2ðcð0Þ0 �cinjÞÞ,

ĉ
ðmodÞ
0 ¼mmðĉ0,Dþ cð0Þ0 Þ: ð70Þ

Outflow boundary condition is used on the right end of the
column, cðlÞNþ1 ¼ cðlÞN .
6. Numerical test problems

In order to validate the results, several numerical test pro-
blems are solved. Here, linear basis functions are considered in
each cell, giving a second order accurate DG-scheme in axial-
coordinate. The ODE-system is solved by a third-order Runge–
Kutta method given in Eq. (66). The program is written in the
C-language under a Linux operating system and was compiled on
a computer with an Intel(R) Core 2 Duo processor of speed 2 GHz
and memory (RAM) 3.83 GB.
6.1. Single component breakthrough curves for linear isotherms

6.1.1. Error analysis for LKM

Here, a comparison of different numerical schemes is pre-
sented for lumped kinetic model. The parameters of the problem
are given in Table 2. The Koren (1993) scheme was already
presented by Javeed et al. (2011) for the EDM and the remaining
flux limiters are given in Table 3. The numerical results at the
column outlet are shown in Fig. 2. In that figure, the concentration
profiles generated by using different numerical schemes on 100
grid points are compared with the analytical solution obtained
from the Laplace transformation. It can be observed that DG and
Koren methods have better accuracy as compared to other flux
limiting finite volume schemes. Further, the zoomed plot of Fig. 2
shows that the solution of DG-scheme is closest to the analytical
solution. The L1-error in time at the column outlet was calculated



Table 4
Errors and CPU times at 50 grid points for linear isotherm.

Limiter L1-error Relative error CPU (s)

DG-scheme 0.4011 0.0100 5.86

Koren 0.5155 0.0137 4.90

Van Leer 0.9324 0.0248 8.26

Superbee 1.0732 0.0286 9.34

MC 0.9762 0.0260 8.82

Table 5
Errors and CPU times at 100 grid points for linear isotherm.

Limiter L1-error Relative error CPU (s)

DG-scheme 0.0139 3:71� 10�4 8.46

Koren 0.0153 4:08� 10�4 7.82

Van Leer 0.2255 0.0060 14.90

Superbee 0.2966 0.0079 17.73

MC 0.2477 0.0066 14.96

Table 6
Parameters for Section 6.2 (non-linear isotherm).

Parameters Values

Column length L¼ 1:0 m

Porosity E¼ 0:4

Interstitial velocity u¼ 0:1 m=s

Dispersion coefficient D¼ 10�4 m2=s

Adsorption rate k¼ 103 1=s

Characteristic time tC ¼ 10 s

Characteristic time tD ¼ 0:01 s
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using the formula

L1-error¼
XNT

n ¼ 1

9cn
R�cn

N9Dt: ð71Þ

The relative error can be defined as

relative error¼

PNT

n ¼ 1 9c
n
R�cn

N9PNT

n ¼ 1 9c
n
R9

Dt, ð72Þ

where cR
n denotes the Laplace solution at the column outlet for

time tn and cN
n represents the corresponding numerical solution.

Moreover, NT denotes the total number of time steps and Dt

represents the time step size. Note that, numerical accuracy can
be influenced by the choice of time step size Dt. Comparisons of
L1-errors, relative errors, and computational times of schemes are
given in Tables 4 and 5 for 50 and 100 grid points, respectively. It
can be observed that the DG-scheme produces small errors
compared to the other schemes for both 50 and 100 grid cells,
but efficiency (or CPU time) of the Koren scheme is better than
the other schemes for both numbers of grid points. It can be
noticed that relative errors of the DG and Koren schemes are very
low for 100 grid points. For that reason, to achieve reliable results
with better accuracy, 100 mesh points are chosen for further
numerical simulations discussed in this section. On the basis of
these results, one can clearly conclude that the DG method can be
an optimal choice to approximate chromatographic models.
Therefore, we are relying on the results of the DG scheme for
the remaining problems of this paper.

6.1.2. Dispersion and mass transfer effects

In this next problem, both the single component EDM and LKM
models are considered and compared. The parameters used to
Table 3
Different flux limiters.

Flux limiter Formula

Van Leer (Leer, 1977)
jðrÞ ¼

9r9þr

1þ9r9
Superbee (Roe, 1986) jðrÞ ¼maxð0,minð2r,1Þ,minðr,2ÞÞ

Minmod (Roe, 1986) jðrÞ ¼maxð0,minð1,rÞÞ

MC (Leer, 1977) jðrÞ ¼maxð0,minð2r, 1
2 ð1þrÞ,2ÞÞ
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Fig. 2. Breakthrough curves (BTC) at x¼1. Comparison of different numerical

schemes for LKM with tC ¼ 10 s, tD ¼ 0:01 s (D¼ 10�5 m2=s or ~t1 ¼ Pe¼ 1000Þ,

and tMT ¼ 0:01 s ðk¼ 100 1=s or ~t2 ¼ 103
Þ.

Characteristic time tMT ¼ 0:001 s

Peclet no ~t1 ¼ Pe¼ 103

Dimensionless number ~t2 ¼ 104

Concentrations c1,0 ¼ c2,0 ¼ 10 mol=l

Henry coefficients a1¼0.5, a2 ¼ 1

Constants used in Eq. (6) b1 ¼ 0:05 l=mol, b2 ¼ 0:1 l=mol

Injection time tin ¼ 12 s
solve the model equations are taken from Lim and Jorgen (2009)
and are given in Table 2. Fig. 3 (top: left) depicts the dispersion
effects of EDM by considering different values of Dapp or char-
acteristic times tD. It demonstrates that smaller values of Dapp

produce steeper fronts. Fig. 3 (top: right) shows similar dispersion
effects by varying D as described by the LKM keeping tC ¼ 10 s
and tMT ¼ 0:01 s ðk¼ 100 1=s, ~t2 ¼ 103

Þ fixed. The similarity with
the corresponding figure for the EDM is due to the relative large
value for k. In Fig. 3 (bottom: left), different values of the mass
transfer coefficients k for fixed D¼ 10�5 m2=s ðPe¼ 104

Þ and
tC ¼ 10 s are used for the LKM. This figure shows that increasing
values of k has a similar effects as produced by decreasing D. In
Fig. 3 (bottom: right), dispersion coefficient D¼ 10�3 m2=s
ðPe¼ 102

Þ is taken into consideration for different values of k. It
is evident that even for a large magnitude of the mass transfer
coefficient k, sharp fronts are not possible due to significant
dispersion effects. All trends generated numerically are well-
known and realistic for the adsorption community.
6.1.3. Comparison of analytical and numerical solutions

This part focuses on the comparison of analytical and numer-
ical results from the EDM and the LKM for both Dirichlet and
Danckwerts boundary conditions. In Fig. 4 (left), the exact solu-
tion obtained for the EDM with Dirichlet boundary conditions is
compared with the numerical Laplace inversion and DG-scheme
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results. Good agreement of these profiles verifies the accuracy of
numerical Laplace inversion and the proposed numerical scheme.
Moreover, the numerical Laplace inversion technique is found to
be a reliable method to solve such model problems and will be
used below in the subsequent case studies. In Fig. 4 (right), the
results of the DG method for the LKM and Dirichlet boundary
conditions are compared with the numerical Laplace inversion
solution. No analytical back transform solution was available for
the LKM using Dirichlet boundary conditions. Fig. 5 (left) and
(right) validates the results of numerical Laplace inversion and
the DG-scheme for the EDM and LKM with Danckwerts boundary
conditions, respectively. These profiles show the high precision of
the numerical Laplace inversion technique and the suggested
numerical scheme. Thus, it can also be concluded that the
considered numerical Laplace inversion technique is an effective
tool for solving these linear models.
6.1.4. Effect of boundary conditions

For the sake of generality, the Peclet number, cf. Eq. (13), is
taken as parameter, while ~t2 ¼ 103

ðtMT ¼ 0:01 sÞ and tC ¼ 10 s are
assumed to be constant for this problem. The results shown in
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Fig. 6 illustrate the importance of using more accurate Danck-
werts boundary conditions for chromatographic model equations,
in the case of relatively small Peclet numbers, e.g. Peo10. For
such values, there are visible differences between the results
obtained by using Dirichlet and Danckwerts boundary conditions.
On the basis of these results, one can conclude that the imple-
mentation of Dirichlet boundary conditions is not adequate for
large dispersion coefficients. For large values of Peclet number
ðPeb10Þ or small axial dispersion coefficients as typically
encountered in chromatographic columns well packed with small
particles, there is no difference between Dirichlet and Danckwerts
boundary conditions. The described behavior was observed in the
solutions of both EDM and LKM.
6.1.5. Discussion on analytically and numerically determined

moments

In this work, only step inputs are taken into account. The
analytical moments are calculated by the formulas presented in
Table 1 and in Appendix Appendix A. The formulas given below
use derivatives to approximate the moments and transform the
step response to a pulse response which is the requirement for
finite results of numerical integration. The simulated moments
are obtained from our proposed numerical methods by using the
following formulas for the first normalized, second central and
third central moments, respectively:

m1 ¼

R1
0

dCðx¼ 1,tÞ

dt
t dt

R1
0

dCðx¼ 1,tÞ

dt
dt

, m02 ¼

R1
0

dCðx¼ 1,tÞ

dt
ðt�m1Þ

2 dt

R1
0

dCðx¼ 1,tÞ

dt
dt

,

m03 ¼

R1
0

dCðx¼ 1,tÞ

dt
ðt�m1Þ

3 dt

R1
0

dCðx¼ 1,tÞ

dt
dt

: ð73Þ

The trapezoidal rule is applied to approximate the integrals in Eq.
(73). The quantitative comparison of first moment or (retention
time) over the flow rate u for the EDM, LKM, and the analytical
formula (cf. Table 1) can be seen in Fig. 7 (left). The results are in
good agreement with each other, verify the high precision of our
numerical results and reveal the expected linear trends.

For calculations of second moments m02 and third moments m03,
the analytical formulas of Table 1 are used.
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Matching m02EDM and m02LKM for the Dirichlet boundary condi-
tions generates the following relationship between Dapp, D and k:.

Dapp ¼Dþ
1

k

að1�EÞ2

E 1þa
ð1�EÞ
E

� �2

0
BBB@

1
CCCAu2: ð74Þ

For given a, E, and u, the above equation can be used to find
possible connections between the kinetic parameters of two
models which should provide very similar elution profiles. For
given reference values of a and E (cf. Table 2), for a velocity
un ¼ 0:35 m=s and a given Dapp ¼ 10�4 m2=s for EDM, there is an
infinite number of combinations for k and D in the LKM. For
example D¼ 5� 10�5 m2=s, we obtain k¼ 362 1=s from the for-
mula (74). The crossing point for the second moments of the two
models marked in Fig. 8 (left) indicates that for this particular
flow rate un, both models will produce almost the same concen-
tration profiles, as verified in Fig. 8 (right). For other than this
specific value of flow rate, keeping Dapp, D, and k fixed, the results
of equilibrium dispersive and lumped kinetic models should
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To study the third moments in more detail, we varied u and
increased the values of Dapp and D by an order of magnitude, i.e.
Dapp ¼ 10�3 m2=s and D¼ 5� 10�4 m2=s, and specified corre-
sponding k values exploiting Eq. (74). Fig. 9 (left) shows the third
moments m03 for different flow rates and reveals the difference in
the third moments for the perfect match of the second moments.
A good agreement between analytical and numerical moments of
our proposed numerical scheme guarantees the high precision of
simulation results one more time. For velocity u¼ 0:1 m=s, where
the large difference between two models is seen in Fig. 9 (left),
time derivatives of two breakthrough curves for both models are
plotted in Fig. 9 (right). It can be observed that EDM gives large
values of m03 as compared to LKM. Thus, EDM produces more
asymmetry in the concentration profiles which is visible in Fig. 9
(right). The fronting edge is steeper and the tailing edge is more
disperse for the EDM predictions as a clear indication of larger
asymmetry compared to the LKM predictions (cf. Fig. 9 (right)).
However, it is evident that the difference in the profiles of both
models is still very small. This justifies the use of the simpler EDM
for linear isotherm involving just one parameter Dapp as compared
to the more complicated LKM which involves two parameters D

and k.
6.2. Two component elutions: extension to competitive non-linear

adsorption isotherm and finite feed volumes (numerical simulations)

After validating the proposed numerical scheme for single com-
ponent linear adsorption, this section is intended to extend our study
to a non-linear problem. On the basis of accurate results for linear
models, we concluded that the suggested numerical technique could
produce reliable solutions for non-linear models as well. In this test
problem, the two components lumped kinetic model along with a
non-linear Langmuir isotherm (cf. Eq. (6)) is considered for finite feed
volumes. A rectangular pulse of a liquid mixture of width tinA ½0,12�
is injected to the column. The boundary conditions are given by Eqs.
(10a) and (10b) for two components (Nc¼2). The parameters of this
problem are taken from Shipilova et al. (2008) and are provided in
Table 3. The numerical results are shown in Fig. 10 (left) by using 150
spatial grid points. The figure elucidates that the DG-scheme gives
better resolution of the rectangular profiles as compared to the
Koren scheme. These results also agree with those obtained by
Shipilova et al. (2008), even for coarse mesh cells. The simulation
results validate the importance of suggested method for approximat-
ing non-linear chromatographic models. Fig. 10 (right) describes
non-equimolar injection concentrations with c1,0 ¼ 4 mol=l and
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c2,0 ¼ 2 mol=l, c1,0 ¼ 2 mol=l and c2,0 ¼ 1 mol=l as well as c1,0 ¼

1 mol=l and c2,0 ¼ 0:5 mol=l, respectively. The results in Fig. 10
(right) illustrate the well-known fact that strong non-linearities
produce overshoots in the profiles. The efficiency and accuracy of
the schemes can be graphically seen in Fig. 11. These plots highlight
that errors of the DG-scheme are lower than the other schemes. It is
probably worthwhile to conclude that an increase in the number of
grid points produces smaller errors, but the computational time of the
numerical schemes increases. The computational times of the DG and
the Koren scheme are comparable, while the time taken by the other
schemes is significantly higher. From the above observations, we
conclude that the DG-scheme could be a better option for solving
such models.
7. Conclusion

This paper described analytical and numerical investigations
of equilibrium dispersive and lumped kinetic models by consider-
ing Dirichlet and Danckwerts boundary conditions. The Laplace
transformation was used as a basic tool to transform the single-
component linear sub model to a linear ordinary differential
equation which is then solved analytically in the Laplace domain.
The inverse numerical Laplace formula was employed to get back
the time domain solution due to the unavailability of exact
solution. A moments analysis of both models was carried out
analytically and numerically for linear isotherms. Good agree-
ment up to third moments assure the better accuracy of numer-
ical solutions. The close connection between EDM and LKM was
analyzed for linear isotherms, a concordance formula was derived
and the strength of the simpler EDM was illustrated. For the
numerical solution of considered models, the DG-scheme was
applied. The presented scheme satisfies the TVB property and
gives second-order accuracy. The method incorporates the ideas
of numerical fluxes and slope limiters in a very natural way to
capture the physically relevant discontinuities without producing
spurious oscillations in their vicinity. The accuracy of proposed
scheme was validated against flux-limiting finite volume schemes
and analytical solutions for linear isotherms. The DG-scheme was
found to be a suitable method for the simulation of linear and
non-linear chromatographic processes in terms of accuracy and
efficiency.

The present contribution was focused on the numerical
approximation of chromatographic process in a single column.
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However, the current scheme can also be used to deal with the
non-linearity of more complicated processes, such as multi-
column, moving-bed, and periodic operations. Especially, to
develop an efficient and accurate numerical scheme for simulated
moving bed will be the main focus of our future research work.

Nomenclature
an
 Henry constants of component n, (–)

cn
 liquid phase concentration of component n, (mol/l)

d
 column diameter, (m)

Dapp
 apparent dispersion coefficient in EDM, ðm2=sÞ

D
 dispersion coefficient in LKM, ðm2=sÞ

h
 numerical flux function

Ij
 jth mesh interval, (–)

k
 mass transfer coefficient, (1/s)

L
 column length, (m)

mm
 minmod limter function

Nc
 number of components, (–)

N
 number of grid cells, (–)

Pe
 Peclet number, (–)

Pl
 Legendre polynomial of order l (–)
qn
n
 solid phase concentration of component n, (mol/l)
t
 time, (s)

u
 interstitial velocity, (m/s)

x
 dimensionless distance, x¼ z=L
z
 spatial coordinate, (m)
Greek symbols
Dt
 time step
Dxj
 width of mesh interval Ij
Dzj
 width of mesh interval Ij
E
 external porosity

tC
 characteristic time ðL=uÞ, (1/s)

tD
 characteristic time ðD=u2Þ, (1/s)

tMT
 characteristic time ð1=kÞ, (1/s)
fl
 local basis function of order l
mn
 n-th initial normalized moment
m0n
 n-th central moment
Subscripts
in
 injection

j
 number of discretized cells

n
 number of Nc components
Abbreviations
BCs
 boundary conditions

DG
 discontinuous Galerkin

EDM
 equilibrium dispersive model

LKM
 lumped kinetic model

ODEs
 ordinary differential equations

PDEs
 partial differential equations

RKDG
 Runge–Kutta discontinuous Galerkin

TVB
 total variation boundedness
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Appendix A

Here, the complete derivations of moments are presented for
both equilibrium dispersive and lumped kinetic models with
Dirichlet and Danckwerts boundary conditions.
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A.1. Equilibrium dispersive model with Dirichlet boundary

conditions

In this part, the moments of equilibrium dispersive model with
Dirichlet boundary conditions are derived. By taking x¼1 and
c0 ¼ 1, the Eq. (18) can be written as

Cðx¼ 1,sÞ ¼
1

s
exp

Pe

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2
þ4 Pe

L

u
ð1þaFÞs

r !
: ðA:1Þ

Let us define

Pe¼
Lu

Dapp
, b1 ¼ Peð1þaFÞ

L

u
: ðA:2Þ

The moment generating property of the Laplace transform is used
exploiting (e.g. Van der Laan, 1958)

mi ¼ ð�1Þi lim
s-0

di
ðsCÞ

dsi
, i¼ 0,1,2,3, . . . : ðA:3Þ

Thus, the zeroth moment is given as

m0 ¼ lim
s-0

sCðx¼ 1,sÞ ¼ lim
s-0

exp
Pe

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2
þ4b1s

q� �
¼ 1: ðA:4Þ

The first initial moment can be obtained from Eq. (A.3) as

m1 ¼ ð�1Þlim
s-0

dðsCÞ

ds
¼ lim

s-0

exp
Pe

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2
þ4b1s

q� �
b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pe2
þ4b1s

q , ðA:5Þ

Thus,

m1 ¼
b1

Pe
¼

L

u
ð1þaFÞ: ðA:6Þ

The second initial moment can be derived from the relation given
in Eq. (A.3) as

m2 ¼ ð�1Þ2 lim
s-0

d2
ðsCÞ

ds2
, ðA:7Þ

where

d2
ðsCÞ

ds2
¼

2b2
1 exp

Pe

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2
þ4b1s

q� �
ðPe2
þ4a1sÞ3=2

þ

b2
1 exp

Pe

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe2
þ4b1s

q� �
Pe2
þ4a1s

:

ðA:8Þ

Thus, the second initial moment is given as

m2 ¼
b2

1ð2þPeÞ

Pe3
¼

2L

u3
Dappð1þaFÞ2þ

L2

u2
ð1þaFÞ2: ðA:9Þ

The second central moment or the variance is given by the
following expression:

m02 ¼ m2�m2
1 ¼

b2
1

Pe3
¼

2L

u3
Dappð1þaFÞ2: ðA:10Þ

Finally, the third initial moment is again obtained using Eq. (A.3)

m3 ¼ ð�1Þ3 lim
s-0

d3
ðsCÞ

ds3
¼

b3
1

Pe5
ð6Peþ12þPe2

Þ ðA:11Þ

or

m3 ¼
L3

u3
ð1þaFÞ3

6Dapp

Lu
þ

12D2
app

L2u2
þ1

 !
: ðA:12Þ
The third central moment can be calculated from the moments
given above using the subsequent formula

m03 ¼ m3�3m1m2þ2m3
1: ðA:13Þ

Thus

m03 ¼
12LD2

app

u5
ð1þaFÞ3: ðA:14Þ
A.2. Equilibrium dispersive model with Danckwerts boundary

conditions

Here, the moments of the equilibrium dispersive model with
Danckwerts boundary conditions are presented.

The zeroth moment is given as

m0 ¼ lim
s-0

A expðl1xÞþB expðl2xÞ ¼ 1: ðA:15Þ

The first initial moment is obtained as

m1 ¼
b1

Pe
¼

L

u
ð1þaFÞ: ðA:16Þ

The second initial moment is calculated as

m2 ¼
2b2

1

Pe4
�1þPeþ

Pe2

2
þe�Pe

 !
ðA:17Þ

or

m2 ¼
2D2

appð1þFaÞ2

u4
�1þ

Lu

Dapp
þ

L2u2

2D2
app

þe�Lu=Dapp

 !
: ðA:18Þ

The second central moment is given as

m02 ¼
2b2

1e�Pe

Pe4
ð�ePeþePePeþ1Þ

¼
2L

u3
Dappð1þaFÞ2 1þ

Dapp

Lu
ðe�Lu=Dapp�1Þ

� �
: ðA:19Þ

Lastly, the third initial moment is provided as

m3 ¼
b3

1

Pe6
ð�24þ6Peþ6Pe2

þPe3
þ24e�Peþ18e�PePeÞ: ðA:20Þ

The third central moment formula based on (A.13) is given below

m03 ¼
12LD2

appð1þaFÞ3

u5
1þ

2Dapp

Lu

� �
e�Lu=Dappþ 1�

2Dapp

Lu

� �� �
:

ðA:21Þ
A.3. Lumped kinetic model with Dirichlet boundary conditions

This part presents the moments for the lumped kinetic model
with Dirichlet boundary conditions. For x¼1 and c0 ¼ 1, Eq. (30)
can be rewritten as

Cðx¼ 1,sÞ ¼
1

s
exp

b

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ4a1s�

4a2

sþa3
þ4a4

r !
: ðA:22Þ

With

b¼ Pe¼
Lu

D
, a1 ¼ Pe

L

u
, a2 ¼

L2

ED
k2a

ð1�EÞ ,

a3 ¼
k

ð1�EÞ , a4 ¼
L2ak

ED : ðA:23Þ

The zeroth moment is given as

m0 ¼ lim
s-0

exp
b

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ4a1s�

4a2

sþa3
þ4a4

r !
¼ 1: ðA:24Þ
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The first initial moment is calculated as

m1 ¼ lim
s-0

4 a1þ
a2

ðsþa3Þ
2

 !
exp

b

2
�

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ4a1s�
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sþa3
þ4a4

r� �

4
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b2
þ4a1s�

4a2

sþa3
þ4a4

r
ðA:25Þ

or

m1 ¼
a1a2

3þa2

a2
3b

¼
L

u
ð1þaFÞ: ðA:26Þ

The second initial moment is again derived using Eq. (A.7) with

d2
ðsCÞ

ds2
¼

4 a1þ
a2

ðsþa3Þ
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Then

m2 ¼
1

a4
3b3
ð2a2

1a4
3þ4a1a2

3a2þ2a2
2þ2a2a3b2

þba2
1a4
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2Þ

ðA:28Þ

or

m2 ¼
2LDð1þaFÞ2

u3
þ

1
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2LaFð1�EÞ
u

þ
L2

u2
ð1þaFÞ2

 !
: ðA:29Þ

Exploiting Eq. (A.10), the second central moment is defined as

m02 ¼
2

a4
3b3
ða2

1a4
3þ2a1a2

3a2þa2
2þa2a3b2

Þ
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2LD 1þa
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or

m02 ¼
2LDð1þaFÞ2
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þ

1

k

2LaFð1�EÞ
u

� �
: ðA:31Þ

The third initial moment is obtained using again Eq. (A.11) with

�
d3
ðsCÞ

ds3
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3 4a1þ
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Then
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Using (A.13), the third central moment is given as
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A.4. Lumped kinetic model with Danckwerts boundary conditions

This part discusses the derivation of moments for lumped
kinetic model with Danckwerts boundary conditions.

The zeroth moment is again given as

m0 ¼ 1: ðA:37Þ

The first initial moment corresponding again to Eq. (A.6)
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The second initial moment is given as
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The second central moment is defined as, cf. (A.10)
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The third initial moment is given as
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The third central moment is using again (A.13) as
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